A Fast Classification Method for Single-particle Projections with a Translation and Rotation Invariant

نویسندگان

  • Xia Wang
  • Guoliang Xu
چکیده

The aim of the electron microscopy image classification is to categorize the projection images into different classes according to their similarities. Distinguishing images usually requires that these images are aligned first. However, alignment of images is a difficult task for a highly noisy data set. In this paper, we propose a translation and rotation invariant based on the Fourier transform for avoiding alignment. A novel classification method is therefore established. To accelerate the classification speed, secondary-classes are introduced in the classification process. The test results also show that our method is very efficient and effective. Classification results using our invariant are also compared with the results using other existing invariants, showing that our invariant leads to much better results. Mathematics subject classification: 65D17.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA

Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...

متن کامل

A model based, anatomy dependent method for ultra-fast creation of primary SPECT projections

  Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...

متن کامل

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

Rotation-invariant texture image retrieval using particle swarm optimization and support vector regression

This paper presents a novel rotation-invariant texture image retrieval using particle swarm optimization (PSO) and support vector regression (SVR), which is called the RTIRPS method. It respectively employs log-polar mapping (LPM) combined with fast Fourier transformation (FFT), Gabor filter, and Zernike moment to extract three kinds of rotation-invariant features from gray-level images. Subseq...

متن کامل

روش انتگرال مسیر برای مدل ‌هابارد تک نواره

  We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly.   Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013